COOLING OF A LAYER DURING STEFAN - BOLTZMANN

RADIATION FROM ITS SURFACE

A. M. Glyuzman and V. M. Yakupov

A solution to the problem of the cooling of a uniformly heated spatial layer is given. It is assumed that the temperature inside the body follows the law of heat conduction while the surface radiates according to the Stefan-Boltzmann law.

We consider a homogeneous body the temperature $U(x, t)$ of which depends only on time t and one space coordinate x, the latter varying from 0 to $2 l$.

This function satisfies the equation of heat conduction:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{a^{2}} \cdot \frac{\partial u}{\partial t}, \quad a^{2}=\frac{k}{c \rho}-\text { const }, \tag{1}
\end{equation*}
$$

where k is the thermal conductivity; ρ is the density; and c is the specific heat of the given body. If $u(x, t)$ denotes the absolute temperature of the body and radiation is transmitted into vacuum, then the thermal flux at the body surface

$$
\left.k \frac{\partial u}{\partial x}\right|_{\substack{x=0 \\ x=2 t}},
$$

according to the Stefan-Boltzmann law, will be proportional to the fourth power of the temperature:

$$
\begin{align*}
\left.k \cdot \frac{\partial u}{\partial x}\right|_{x=0} & =\sigma[u(0, t)]^{4} \tag{2}\\
-\left.k \frac{\partial u}{\partial x}\right|_{x=2 l} & =\sigma[u(2 l, t)]^{4} . \tag{3}
\end{align*}
$$

The initial temperature distribution $u(x, 0)$ inside the body is equal to T_{0} :

$$
\begin{equation*}
\left.u(x, t)\right|_{t=0}=T_{0} \tag{4}
\end{equation*}
$$

Since the initial values and the boundary conditions are symmetrical with respect to the point $\mathrm{x}=l$,

$$
\begin{equation*}
\left.\frac{\partial u}{\partial x}\right|_{x=l}=0 \tag{5}
\end{equation*}
$$

We denote the temperature gradient on the surface by $\nu(t)$:

$$
v(t)=\left.\frac{\partial u(x, t)}{\partial x}\right|_{x=0}
$$

We then must solve Eq. (1), the equation of heat conduction, with the boundary conditions

$$
\begin{align*}
& -\left.\frac{\partial u}{\partial x}\right|_{x=0}=v(t), \tag{6}\\
& \left.\frac{\partial u}{\partial x}\right|_{x=i}=0 \tag{7}
\end{align*}
$$

[^0]and the initial values (4). It now remains to determine $\nu(t)$ so that condition (2) be satisfied. For this purpose we reduce the heat-conduction equation (1) to a simpler parabolic equation by substituting $y=a^{2} t$:
$$
\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial u}{\partial y}=0
$$

Substituting $\eta=a^{2} \tau$ will reduce the conjugate equaton to

$$
\frac{\partial^{2} u}{\partial \varsigma^{2}}+-\frac{\partial u}{\partial \eta}=0
$$

Let us consider function

$$
F(\zeta, \eta ; x, y)=\left\{\begin{array}{c}
\frac{1}{\sqrt{y-\eta}} \sum_{n=-\infty}^{\infty}\left[\exp \left(-\frac{1}{4} \cdot \frac{(x-\zeta+2 n i)^{2}}{y-\eta}\right)+\exp \left(-\frac{1}{4} \cdot \frac{(x+\zeta+2 n i)^{2}}{y-\eta}\right)\right] \\
0 \quad \begin{array}{c}
\text { for } y>\eta, \\
\text { for } y \leqslant \eta .
\end{array}
\end{array}\right.
$$

We now apply the Green formula for the heat-conduction operator to functions $u(\zeta, \eta)$ and $F(\zeta, \eta ; x, y+h)$ ($h>0$), integrate over the contour ABQP (Fig. 1), move to the limit $h \rightarrow 0$, and use the Poisson formula to obtain

$$
2 \sqrt{\pi} u(x, y)=\int_{A B} u F d \zeta+\int_{P A}\left(F \frac{\partial u}{\partial \zeta}-u \frac{\partial F}{\partial \zeta}\right) d \eta+\int_{B Q}\left(F \frac{\partial u}{\partial \zeta}-u \frac{\partial F}{\partial \zeta}\right) d \eta .
$$

Considering the initial and the boundary conditions, while expanding function $F(\zeta, \eta ; x, y)$ into a Fourier series:

$$
F(\zeta, \eta ; x, y)=\frac{2 \sqrt{\pi}}{l}+\frac{4 \sqrt{\pi}}{l} \sum_{n=1}^{\infty} \exp \left[-\frac{\pi^{2} n^{2}}{l^{2}}(y-\eta)\right] \cos \frac{n \pi}{l} x \cdot \cos \frac{n \pi}{l} \zeta
$$

and transforming back to the original variables, we obtain the solution in the form:

$$
\begin{gathered}
u(\dot{x}, t)=T_{0}-\frac{a}{\sqrt{\pi}} \int_{0}^{t} \frac{v(\tau)}{\sqrt{t-\tau}} \sum_{n=-\infty}^{\infty} \exp \left[-\frac{1}{4} \frac{(x+2 n l)^{2}}{a^{2}(t-\tau)}\right] d \tau \\
0<x<t, \quad 0 \leqslant \tau \leqslant t
\end{gathered}
$$

which is convenient for calculations at small values of t. For calculations at large values of t we have the solution in the form

$$
u(x, t)=T_{0}-\frac{a^{2}}{l} \int_{0}^{t} v(\tau)\left[1+2 \sum_{n=1}^{\infty} \exp \left[-\frac{\pi^{2} n^{2} a^{2}}{l^{2}}-(t-\tau)\right] \cos \frac{n \pi}{t} x d \tau\right.
$$

As has been mentioned already,

$$
\left.\frac{\partial u}{\partial x}\right|_{x=0}=v(t) .
$$

In order to satisfy condition (2), it is necessary that function $\nu(t)$ satisfy the relation

$$
\begin{equation*}
k v(t)=\sigma\left\{T_{0}-\frac{a}{\sqrt{\pi}} \int_{0}^{t} \frac{v(\tau)}{\overline{1-\tau}} \sum_{n=-\infty}^{\infty} \exp \left[-\frac{n^{2} l^{2}}{a^{2}(t-\tau)}\right] d \tau\right\}^{4} \tag{8}
\end{equation*}
$$

which is a nonlinear integral equation in the function $\nu(t)$.
We take T_{0} outside the brackets, divide by σT_{0}^{4}, and introduce new variables $2, \zeta$ letting

$$
t=\gamma^{2} z, \quad \tau=\gamma^{2} \zeta
$$

and a new function

Fig. 1. Contour of integration.

$$
\varphi(z)=v\left(\gamma^{2} z\right) \cdot \frac{k}{\sigma T_{0}^{4}},
$$

where

$$
\gamma=\sqrt{\pi} \frac{T_{0}}{a} \cdot \frac{k}{\sigma T_{0}^{4}},
$$

so that

$$
\begin{equation*}
\varphi(z)=\left\{1-\int_{0}^{z} \frac{\varphi(\xi)}{\sqrt{z-\zeta}} \sum_{n=-\infty}^{\infty} \exp \left[-\frac{\left.n^{2}\right|^{2}}{a^{2} \gamma^{2}(z-\zeta)}\right] d \zeta\right\}^{4} . \tag{9}
\end{equation*}
$$

If we find $\varphi(\mathrm{z})$, then

$$
v(t)=\frac{\sigma T_{0}^{4}}{k} \varphi\left(\frac{t}{\gamma^{2}}\right) .
$$

The nonlinear integral equation (9) has a unique bounded solution [1, pp.461-469] on the interval ($0, z_{0}$).
Another aspect of successive approximations is to be noted here. If we consider only those functions $\varphi(\mathrm{z})$ and those intervals $0 \leq \zeta \leq \mathrm{z}$ for which

$$
\int_{0}^{z} \frac{\varphi(\zeta)}{\sqrt{z-\zeta}} \sum_{n=-\infty}^{\infty} \exp \left[-\frac{n^{2} l^{2}}{a^{2} \gamma^{2}(z-\zeta)}\right] d \zeta<1
$$

then the successive approximations based on the relation

$$
\varphi_{n}(z)=\left[1-\int_{0}^{z} \frac{\varphi_{n-1}(\zeta)}{\overline{z-\zeta}} \sum_{n=-\infty}^{\infty} \exp \left(-\frac{n^{2} l^{2}}{a^{2} \gamma^{2}(z-\zeta)}\right) d \zeta\right]^{4}
$$

approach the solution to $E q$. (9) from different directions.
Calculations gield the following result:

$$
\begin{aligned}
& \varphi_{0}(z)=0, \\
& \varphi_{1}(z)=1, \\
& \varphi_{2}(z)=\left[1-2 \sqrt{z}-4 \sum_{n=1}^{\infty} \int_{0}^{/ \overline{2}} \exp \left(-\frac{n^{2} l^{2}}{a^{2} \gamma^{2} t^{2}}\right) d t\right]^{4} .
\end{aligned}
$$

For large values of z, the function $\varphi(z)$ is determined by the equation

$$
\Phi(z)=\left[1-\int_{0}^{2}\left(1+2 \sum_{n=1}^{\infty} \exp \left(-\frac{\pi^{2} n^{2} a^{2} \gamma^{2}}{l^{2}}\{z-\xi)\right)\right) \varphi(\zeta) d \zeta\right]^{4} .
$$

The trend of these curves is shown in Fig. 2, with

$$
z=\frac{t}{\gamma^{2}} \text { and } \gamma=\frac{\sqrt{\pi}}{a} T_{0} \frac{k}{\sigma T_{0}^{4}} .
$$

If $\mathrm{T}_{0}=3000^{\circ} \mathrm{K}, \mathrm{k}=0.006, l=2 \mathrm{~m}, a^{2}=0.007 \mathrm{~m}^{2} / \mathrm{sec}$, and $\sigma=1.2 \cdot 10^{-12} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{deg}^{4}$, then $\gamma=3.5$ and one unit on the time axis is in our case equal to 12 sec .

The method of solution outlined is applicable also to the case where the body receives a constant supply of heat from an external source and its initial temperature remains constant.

NOTATION

$\mathrm{u}(\mathrm{x}, \mathrm{t})$	is the body temperature;
T_{0}	is the absolute temperature;
x	is the space coordinate;
t	is the time, sec;
$2 l$	is the width of the spatial layer, $\mathrm{m} ;$
k	is the thermal conductivity, $\mathrm{W} / \mathrm{m} \cdot \mathrm{deg} ;$
ρ	is the density, $\mathrm{kg} / \mathrm{m}^{3} ;$
c	is the specific heat, $\mathrm{J} / \mathrm{kg} \cdot \mathrm{deg} ;$
a	is the thermal diffusivity, $\mathrm{m}^{2} / \mathrm{sec} ;$
σ	is the Stefan-Boltzmann constant, $\mathrm{W} / \mathrm{cm}^{2} \cdot \mathrm{deg}^{4} ;$
$\nu(\mathrm{t})$	is the temperature gradient at the body surface;
$\varphi(\mathrm{z}), \mathrm{F}(\zeta, \eta ; \mathrm{x}, \mathrm{y})$	are functions;
ζ, η, z	are variables;
γ	is a constant;
h	in some number;
τ	is the variable of integration;
n	is a natural number.

LITERATURE CITED

1. A. N. Tikhonov, Izv. Akad。Nauk SSSR, Ser. Geograf. i Geofiz., No. 3, 461-479 (1937).
2. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Gostekhizdat, Moscow (1953).
3. G. N. Polozhii, Equations of Mathematical Physics [in Russian], Vysshaya Shkola, Moscow (1964).
4. A.A.Berezovskii, Nonlinear Boundary-Value Problems Related to a Thermally Radiating Body [in Russian], Naukova Dumka, Kiev (1968).
5. N. S. Koshlyakov, Basic Differential Equations of Mathematical Physics [in Russian], ONTI, Lenin-grad-Moscow (1936).

[^0]: Bashkir State University, Ufa. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 21, No. 6, pp. 1079-1083, December, 1971. Original article submitted July 2, 1970.

 > O 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West lith Street, New York, N. Y. 10011 . No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.

